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Nontrivial extension of the two-dimensional Ising model: Thed-dimensional ‘‘molecular’’
model

Fabio Siringo
Dipartimento di Fisica e Astronomia, ed Unita` INFM dell’ Università di Catania, Corso Italia 57, I-95129 Catania, Italy

~Received 24 May 2000!

A recently proposed molecular model is discussed as a nontrivial extension of the Ising model. Ford52 the
two models are shown to be equivalent, while ford.2 the molecular model describes a peculiar second order
transition from an isotropic high-temperature phase to a low-dimensional anisotropic low-temperature state.
The general mean-field analysis is compared with the results achieved by a variational Migdal-Kadanoff real
space renormalization group method and by standard Monte Carlo sampling ford53. By finite size scaling the
critical exponent has been found to ben50.4460.02, thus establishing that the molecular model does not
belong to the universality class of the Ising model ford.2.

PACS number~s!: 64.60.Cn, 64.60.Fr, 62.50.1p, 05.50.1q
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I. INTRODUCTION

Most molecular liquids retain their molecular structu
even in the solid phase, where some long range order usu
shows up as a consequence of intermolecular interac
However, in the solid the orientational order of the mo
ecules may change according to the thermodynamic co
tions, giving rise to quite rich phase diagrams as rece
observed for hydrogen under high pressure@1#.

The most studied theoretical models for orientational
der describe a molecular interaction that arises from dip
fluctuation, is weak, and gives rise to the observed thr
dimensional ordering of most molecular van der Waals s
ids. The thermodynamic behavior of such weakly interact
systems can be analyzed in terms ofO(3) symmetric vecto-
rial models. Conversely, the ‘‘molecular’’ model was fir
motivated@2# by a description of almost covalent molecul
solids where the interaction has a covalent main compon
and is characterized by some level of frustration~since the
coordination number for the covalent bond is quite low!. In
such solids each molecule must choose a few partners
cannot accept any further invitation. The lower is the
lowed coordination number, the higher the frustration, wh
gives rise to the low-dimensional structures observed
polymers~one dimensional! or in iodine@3–5# and hydrogen
halides@6,7# ~two dimensional!. Moreover, we expect that
covalent interaction should show up for all molecular sol
under high pressure@8#, as the intermolecular distance a
proaches the intramolecular length, provided that some
portant structural transition does not occur first~like disso-
ciation!.

The ‘‘molecular’’ model is a simple frustrated lattic
model which can describe some aspects of molecular or
tation in covalently bound molecular solids. It consists o
d-dimensional hypercubic lattice with a randomly orient
linear molecule at each site. In its simplest version each m
ecule is allowed to be oriented toward only one of its nea
neighbors. There is an energy gain for any pair of neighb
that are oriented along their common bond~a covalent bond!.
The existence of preferred orientational axes breaks the
tational invariance of the single molecule, as is likely to o
cur for any real molecular system under pressure. In f
even in hydrogen, the broken-symmetry phase transition
PRE 621063-651X/2000/62~5!/6026~9!/$15.00
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served under pressure@9# has recently been shown@10# to be
affected by the presence of a crystal field which breaks
isotropy. Quite recently, similar lattice models have be
used for describing the diffusion of particles and molecu
inside a polymer, and the growth of one-dimensional islan
~polymeric chains! @11#.

The molecular model has already stimulated some rec
work on molecular orientation in nitrogen@12,13# where
some experimental data@14# confirm the existence of an ori
entational disordering temperature in the solid below
melting temperature. However, the molecular systems wh
seem to be more closely described by the molecular mo
are the hydrogen halides HX (X5F,Cl,Br,I). Their low-
temperature structures are known to consist of planar ch
of molecules in the condensed state, while a totally dis
dered structure has been observed with increasing temp
ture at ambient pressure@6#. The opposite transition, from
orientational disorder to an ordered chain structure, has
been reported on increasing pressure@7#.

In fact the molecular model undergoes a transition fro
an high-temperature~or weakly interacting! fully isotropic
disordered system to a low-temperature~or strongly interact-
ing! anisotropic low-dimensional broken-symmetry pha
As a consequence of frustration the breaking of symmetr
accompanied by a sort of decomposition of the system
low-dimensional almost independent parts, as observe
solid iodine and hydrogen halides. Such remarkable beha
requires a space dimensiond.2, while for d52 the model
is shown to be equivalent to the exactly solvable tw
dimensional Ising model@15#. As shown below by Monte
Carlo calculations, in the broken-symmetry phase the sys
displays the presence of correlated chains of molecu
~polymers! which point toward a common direction insid
each two-dimensional subset of the lattice~plane!. Such
planes are weakly correlated in the low-temperature ph
and the system has a two-dimensional behavior even
d.3.

In this paper the relevance of the molecular model a
nontrivial extension of the Ising model is pointed out. Thu
apart from the physical motivations, the model is fully e
amined and the phase transition is described by several m
ods: mean field, real space renormalization group, and
merical simulations. Exactly solvable models are import
6026 ©2000 The American Physical Society
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PRE 62 6027NONTRIVIAL EXTENSION OF THE TWO-DIMENSIONAL . . .
for our understanding of more complex systems, and prov
a test for approximate techniques. Thed-dimensional mo-
lecular model shares with the Ising model thed52 realiza-
tion, since their equivalence ford52 has been proved to b
exact@2#. In this paper we will focus on thed53 model, but
we will take advantage of the existence of an exactly so
able realization ford52. For d.2, as the frustration in-
creases, the model shows a very different behavior from
Ising or Potts @16# models. These last show a full
d-dimensional broken-symmetry phase while the molecu
model is characterized by a low-dimensional ordering ins
the planes with negligible correlation among differe
planes. Moreover, ford53 the molecular model is shown t
belong to a different universality class, since its critical e
ponentn turns out to ben50.4460.02 by finite size scaling
We expect that such a universality class should describ
broad group of isotropic physical systems characterized b
low-dimensional ordering in their low-temperature pha
Such a broad class of phase transitions should be explore
experiments in order to compare with the theoretical pred
tions for the critical universal properties. In this respect
driving parameter does not need to be the temperature, a
bond strength can be directly modified by a change of p
sure in several systems.

This paper is organized as follows. Section II contain
formal definition of thed-dimensional molecular model, an
a proof of its equivalence to the Ising model ford52. In
Sec. III the mean-field solution is discussed for the gene
d-dimensional model. In Sec. IV a modified variation
Migdal-Kadanoff method is presented and its application
discussed ford52 andd53. At variance with a previous
calculation@17# which yielded a quite poor result, the varia
tional method is shown to work very well provided that som
assumptions are made about the nature of the broken ph
Section V contains the results of a numerical simulation
Monte Carlo sampling, and the numerical estimation of b
critical temperature and exponent by finite size scaling.
Sec. VI the main findings are summarized and discussed

II. MOLECULAR MODEL

Let us consider ad-dimensional hypercubic lattice, with
randomly oriented linear molecule at each site. The m
ecules are supposed to be symmetric with respect to t
center of mass which is fixed at the lattice site. Only a d
crete number of space orientations are allowed for each m
ecule: we assume that each of them must point toward on
its 2d first neighbor sites. This choice can be justified by t
existence of covalent interactions along preferred axes. T
each molecule hasd different states corresponding to m
lecular orientation along the hypercube axes~molecules are
symmetric!. Finally, each couple of first neighbor molecule
when pointing one toward the other, are assumed to ga
bonding energy for their directional covalent bond~they
touch each other!. As shown in Fig. 1 ford52, bonding in
one direction excludes any possible bond along the o
(d21) directions. The coordination number is 2 for a
value ofd, and the frustration increases with increasingd.

According to this description we introduce a versor va
able ŵr for each of theN sites r of the lattice, with ŵr

P$x̂1 ,x̂2 , . . . ,x̂d% pointing toward one of thed hypercube
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axes xa . The versorsx̂a are assumed to be orthonorma
x̂a• x̂g5dag . The partition function is

Z5(
$ŵ%

eS5(
$ŵ%

expF4b(
r ,a

~ŵr• x̂a!~ŵr1 x̂a
• x̂a!G , ~1!

where $ŵ% indicates a sum over all configurations,a runs
from 1 to d, and the lattice spacing is set to unity. Th
inverse temperatureb ~in units of the binding energy! can be
negative for arepulsivemodel, but is assumed positive in th
molecular context.

The model may be generalized by introducing an exter
d-dimensional vectorial fieldh(a) at each link. The depen
dence ona means that the field differs according to the spa
directiona of the lattice link that joins the sites. The mod
fied partition function reads

Zh5(
$ŵ%

eSh5(
$ŵ%

expH 4b(
r ,a

@~ŵr• x̂a!~ŵr1 x̂a
• x̂a!

1h~a!•ŵr1h~a!•ŵr1 x̂a
#J . ~2!

It is evident that if the field satisfies the condition

(
a

h~a!50 ~3!

thenSh does not depend onh andSh[S. In such a case the
extra degree of freedom provided byh can be regarded as
sort of internal symmetry of the model. This global symm
try can be made local by allowing the fieldh to depend on
the site positionr . We will only take advantage of the globa
symmetry in this paper. We notice that such symmetry c
not be seen as a gauge invariance, since in lattice ga
models any gauge change leaves the energy gain uncha
at any link. Here the fieldh changes the energy gain of a
the links while the whole action is invariant.

Adopting a more compact notation, the partition functi
reads

Zh5(
$ŵ%

eSh5(
$ŵ%

e(r ,aL(r ,a) ~4!

FIG. 1. An allowed configuration ford52.
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6028 PRE 62FABIO SIRINGO
where the Lagrangian densityL follows as

L~r ,a!5ŵr
†Ma~b,h!ŵr1 x̂a

. ~5!

Here the canonicald-dimensional column vector represent
tion of Rd is employed with x̂1[(1,0,0, . . . ), x̂2
[(0,1,0, . . . ), etc. Thed3d matrix Ma does not depend on
the configurations of the system, and entirely character
the model.

The global symmetry of the action provides a simple w
to show the equivalence between molecular and Ising mo
for d52. For the two-dimensional lattice the condition~3! is
satisfied by the fieldh(1)5h( x̂12 x̂2), h(2)52h(1). The
matrix Ma follows:

M15S 4b~112h! 0

0 28bhD ,

~6!

M25S 28bh 0

0 4b~112h!
D .

Then forh521/4, M1[M2, andL reads

L~r ,a!5b1ŵr
†S b 2b

2b b D ŵr1 x̂a
. ~7!

Identifying the two-dimensional column versorsŵ with spin
variables, apart from an inessential factor,Z reduces to the
partition function of a two-dimensional Ising model,

Z5e2bNZIsing , ~8!

and is exactly solvable. Forb→1` a ground state is ap
proached with all the molecules oriented along the same
rection, and with formation of one-dimensional polyme
chains @Fig. 2~a!#; for b→2` the repulsive model ap
proaches a zero-energy~no bonds! ground state analogous t
the antiferromagnetic configuration of the Ising model@Fig.
2~b!#.

For d>3 the analogy with the Ising model breaks dow
and this is evident from a simple analysis of the ground s
configuration. Due to frustration the model has an infinite
degenerate ground state in the thermodynamic limitN→`.
For instance, in the cased53, the minimum energy is ob
tained by orienting all the molecules along a common dir
tion, as ford52. However, the ground state configuration
not unique: the number of molecular bonds does not cha
if we rotate together all the molecules belonging to an en
layer that is parallel to the original direction of orientatio
As a consequence of frustration the total degeneracy
3(2(N1/3)), and the system could even behave like a glass
the large energy barriers that separate each minimum f
the others. The phase diagram is expected to be quite
with at least a transition point between the high-tempera
disordered phase and an ordered broken-symmetry
temperature phase.

III. MEAN-FIELD APPROXIMATION

For the genericd-dimensional model, some analytical r
sults can be obtained in mean-field~MF! approximation: ne-
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glecting second order fluctuation terms

~ŵr• x̂a!~ŵr1 x̂a
• x̂a!'Da~ŵr• x̂a!1Da~ŵr1 x̂a

• x̂a!2Da
2 ,
~9!

whereDa5^ŵr• x̂a& is an average over the configuration
and (aDa51 ~with the obvious bounds 0<Da<1). Here
the order parameterDa gives the probability of finding a
molecule oriented along the direction ofx̂a . The partition
function factorizes as

ZMF5S (
a

e8bDaD N

expS 24Nb(
a

Da
2 D ~10!

and the free energy follows as

FMF52
1

Nb
ln ZMF54(

a
Da

22
1

b
lnS (

a
e8bDaD .

~11!

The derivative with respect toDm yields, for the stationary
points,

Dm5
e8bDm

(ae8bDa
, ~12!

which satisfies the condition(aDa51.
In the high-temperature limitb→0 Eq. ~12! has the

unique solutionDm51/d which reflects the completely ran
dom orientation of molecules. In the opposite limitb→`,
apart from such a solution, Eq.~12! is satisfied by the
broken-symmetry fieldDm51, Da50 for aÞm, which ob-
viously corresponds to a minimum forFMF . Thus at a criti-
cal pointb5bc the high-temperature solution must becom

FIG. 2. Ground state configurations for the two-dimensionalat-
tractive ~a! and repulsive~b! models.
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PRE 62 6029NONTRIVIAL EXTENSION OF THE TWO-DIMENSIONAL . . .
unstable toward a multivalued minimum configuration. T
Hessian matrix is easily evaluated at the stationary points
using Eqs.~12! and ~11!:

Hmn5
1

8

]2FMF

]Dm ]Dn
5dmn~128bDm!18bDmDn . ~13!

In the high-temperature phase (b,bc), insertingDm51/d,
the eigenvalue problem

detuHmn2ldmnu50 ~14!

yields

S 12
8b

d
2l D d21

~12l!50. ~15!

Thus the Hessian matrix is positive definite if and only ifl
5(128b/d).0. Beyond the critical pointb5bc5(d/8)
the solutionDm51/d is not a minimum, and a multivalue
minimum configuration shows up. Such a result obviou
agrees with the MF prediction for the Ising model,b Ising
51/(2d), only for the special dimensiond52. Ford.2 we
observe an increase ofbc with d, to be compared to the
opposite trend shown by the Ising model. Such behavior m
be interpreted in terms of the low dimensionality of the o
dered phase. Due to frustration the ordering may occur o
on a low-dimensional scale: for instance, in three dimensi
each layer has an independent internal ordering. Thus
expect a largerbc for d.2 since the increase ofd only
introduces larger fluctuations, with each molecule hav
(d22) allowed out-of-plane orientations. Ford53 the low-
temperature phase can be regarded as a quenched disor
superposition of layers that are internally ordered along
ferent in-plane directions. As a consequence of frustra
the system shows a two-dimensional character below
critical point while behaving as truly three dimensional in t
high-temperature domain. In a MF analysis the neglecting
some fluctuations usually leads to a critical temperature
overestimates the exact value~i.e., the critical inverse tem
peraturebc is underestimated!. For d52 the MF prediction
is bc50.25 to be compared with the exact valuebc
50.4407. For d53 the MF prediction bc5d/850.375
should provide a lower bound to the unknown exact valu

IV. VARIATIONAL MIGDAL-KADANOFF
APPROXIMATION

According to the Migdal-Kadanoff@15,18# method, a link
displacement may be introduced by considering that the c
figurational average of the Lagrangian densityL in Eq. ~5!
must be translationally invariant,

^L~r ,a!&5^L~r 8,a!&. ~16!

Then defining

Ga~r ,r 8!5L~r ,a!2L~r 8,a! ~17!

we can state that̂Ga(r ,r 8)&50 and the same holds for an
sumG over an arbitrary set of such terms,
y
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G5( Ga~r ,r 8!. ~18!

Replacing the actionSh by the sumSh1G, and assuming
that the condition~3! is satisfied~so that we can drop theh in
Sh andZh which are invariant!, the modified partition func-
tion ZG can be approximated by cumulant expansion as

ZG5(
$ŵ%

eS1G5Z^eG&'Z@e^G&e(^G2&2^G&2)/2#; ~19!

then, sincê G&50,

ZG'Zê G2&/2. ~20!

For instance, the sum in Eq.~18! could run over allaÞ1,
and for appropriate values of the vectorsr ,r 8, in order to
yield a displacement of links that are orthogonal tox̂1. To
second order inG, the error introduced by link displacemen
is controlled by the exponential factor in Eq.~20!.

Link displacement breaks the internal symmetry of t
model, so thatZG is no longer invariant for any field chang
subject to the condition~3!. Thus we may improve the ap
proximation by using the extra freedom in the choice ofh for
minimizing the difference between the approximate partit
function ZG and the exactZ.

If h satisfies the condition~3! then ah satisfies such a
condition as well for any choice of the scalar parametera.
Then a special class of invariance transformations can
described by a change of the strength parameterh, assuming
the fieldh as proportional toh. The following discussion can
easily be generalized to other classes of transformations
scribed by more than one parameter. SinceG is linear in the
field h, then in general

G25@A1hB#2, ~21!

whereA and B depend on the configuration of the syste
For the average we have

^G2&5^A2&12h^AB&1h2^B2&. ~22!

This last equation, inserted in Eq.~20!, leads to the following
considerations:~i! the coefficient̂ B2& is positive definite, so
the averagêG2& always has a minimum for an appropria
value of h5h0; ~ii ! in general^AB&Þ0, so h0Þ0, and a
direct use of the Migdal-Kadanoff method on the origin
model ~with no field considered! would yield a larger error;
~iii ! to the considered order of approximationZG is stationary
at h5h0 and is symmetric around that point, so all the phy
cal properties described by such a partition function must
symmetric with respect toh0. Moreover, at the same order o
approximation, any physical observablef will acquire an un-
physical dependence onh, and the symmetry aroundh0 re-
quires thatd f /dh50 for h5h0. Thus we expect that all suc
observables should be stationary ath5h0, and their best
estimate should coincide with the extreme value.

As a consequence of the above statements, the Mig
Kadanoff method can be improved by taking advantage
the global symmetry of the model. By use of the approxim
partition functionZG the critical temperature acquires a no
physical field dependence, but the best estimate ofbc is its
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stationary value corresponding toh5h0. The method can be
seen as a variational method with the best approxima
achieved by the minimum in the inverse temperature.

Such a stationary condition resembles the principle
‘‘minimum sensitivity’’ introduced by Stevenson@19# for de-
termining the best renormalization parameters whenever
physical amplitudes depend on them~and they should not!.
In our context, since the critical temperature should not
pend on the choice of the field strengthh, the best value for
such a field is the one that makes the critical temperature
sensitive, i.e., the stationary point. However, according
Eqs. ~20! and ~22!, here we have a formal proof of the st
tionary condition up to second order of the cumulant exp
sion.

The method may be used by performing a displacemen
links that are orthogonal tox̂1 and then a one-dimensiona
decimation along thea51 axis. According to such a pro
gram let us define thed3d matrix ta(b,h),

eL(r ,a)5ŵr
†ta~b,h!ŵr1 x̂a

. ~23!

The partition function follows:

Zh5(
$ŵ%

)
r ,a

@ŵr
†ta~b,h!ŵr1 x̂a

#. ~24!

After link displacement and decimation along thea51 axis,
the modified partition function reads

ZG5(
$ŵ%

)
r ,a

@ŵr
† t̃ a~b,h!ŵr1 x̂a

#, ~25!

where the sum and the product run over the configurati
and the sites of the new decimated lattice, and

t̃ 1~b,h!5@ t1~b,h!#l, ~26!

t̃ a~b,h!5ta~lb,h! for aÞ1, ~27!

with l being the scale factor between the new and the
lattice. A renormalized inverse temperatureb̃a may be de-
fined according to

t̃ 1~b,h!5t1~ b̃1 ,h!, ~28!

b̃a5lb for aÞ1. ~29!

Eventually, the same scaling operation should be perform
consecutively for all the directions in order to obtain a h
percubic lattice again. For any finite scaling parametel
.1 the renormalized inverse temperature is anisotropic,
an isotropic fixed point can be recovered in the limitl→1.
Equations~28! and ~29! define the flow of the renormalize
inverse temperature, which changes for different values
the field strengthh. Equation~28! has a more explicit aspec
in the representation of the common eigenvectors of the
trices t1 and t̃ 15@ t1#l. The rank of such matrices is 2 fo
any space dimensiond, as is expected from the definition o
the model. Then both the matrices can be represente
terms of the two nonvanishing eigenvaluesh1 ,h2, which are
functions ofb andh. Assuming thath2Þ0 and defining
n
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f ~b,h!5h1 /h2 , ~30!

apart from a regular multiplicative factor for the partitio
function, the scaling equation~28! reads

@ f ~b,h!#l5 f ~ b̃1 ,h!. ~31!

For any fixedh, the fixed points follow through the standar
Migdal-Kadanoff equations

@ f ~la21ba ,h!#l5 f ~la2dba ,h!. ~32!

Whenl is analytically continued up to 1 such equations gi
the same isotropic fixed pointbc . In fact, the expansion o
Eqs.~32! aroundl51 implies ~up to first order inl21)

ln f ~bc ,h!52~d21!bcF1

f

d f

dbG
bc

, ~33!

which is an implicit equation forbc . Such equations yield
their best estimate ofbc when the strength of the fieldh is
set to the stationary valueh0.

It is instructive to evaluate the stationary pointh0 for the
cased52, which is equivalent to the two-dimensional Isin
model for the choiceh5hI521/4, as shown in Sec. II. The
h invariance of the exact partition function guarantees
equivalence of the two models for any choice ofhÞhI .
However, the mere application of the Migdal-Kadanoff equ
tions ~32! to the simpleh50 molecular model fails to pre
dict even the existence of the fixed point. On the other ha
for h5hI , the very same recurrence equations~32! are
known to predict the exact fixed point in the limitl→1.
That can also be checked by inserting in Eq.~33! the exact
expression for the fixed point of the two-dimensional Isi
model. Such contradictory results are not surprising since
already discussed, link displacement breaks theh invariance
of the model, and the approximate solution is thus depend
on the choice ofh. It can be checked@17# that in this case, by
use of Eq.~6!, the solution of Eq.~33! is stationary ath5
21/45hI for any b. As expected, this is the value require
in order to recover the Ising model. Thus the Migda
Kadanoff approximation gives an improving estimate of t
critical point as we move from themolecular toward the
Ising representation~where the approximation yields the ex
act fixed point!. We stress that all such representations
equivalent due to theh invariance of the action.

For d.2 no equivalence to standard studied models
been found, and the behavior seems to be dictated by
strong frustration which does not allow a higher coordinat
number than 2, even for higher dimensions. We will focus
the d53 model in order to compare the results with t
Monte Carlo findings of the next section. First of all th
fields h(a) must be defined. An isotropic choice would be

h~1!5h~ x̂12 1
2 x̂22 1

2 x̂3!,

h~2!5h~ x̂22 1
2 x̂32 1

2 x̂1!, ~34!

h~3!5h~ x̂32 1
2 x̂12 1

2 x̂2!.

Now Eq. ~30! reads
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f ~b,h!5
h1

h2
5

~bx312!2A~bx322!218x3

~bx312!1A~bx322!218x3
, ~35!

whereb5exp(4b) andx5exp(4bh). Differentiating with re-
spect tox we find that the derivative off vanishes only for

h5hm52
1

3
1

1

12b
ln 2, ~36!

which depends onb. For such a field strengthhm(b) the
ratio between the eigenvalues reduces to

f ~b,hm!5tanh~b!, ~37!

which is exactly the same expression holding for the Is
model@15#. However, we must point out that in such a ca
hm is not the stationary pointh0. Sincehm depends onb, the
vanishing of the derivative off does not imply that the solu
tion of Eq. ~33! is stationary. In fact, ford53, the choice
h5hm yields the known@17# poor resultbc50.1398 by in-
sertion of Eq.~37! in Eq. ~33!. On the other hand, by inser
tion of the general expression forf, Eq. ~35!, the scaling
equation~33! can be numerically solved forbc as a function
of h. At the stationary pointbc has a minimum, and thus th
variational method yields an even worse prediction (bc
'0.12 at the stationary point!. These shortcomings show th
the isotropicd53 variational method does not suit the m
lecular model. Actually, both MF and Monte Carlo metho
predict a largerbc and, as pointed out at the end of th
previous section, the exactbc should be larger than the MF
predictionbMF50.375.

We could have guessed such a disagreement since w
using an isotropic version of the variational Migda
Kadanoff method for a system that is not isotropic in
ordered phase. At the transition point the system choos
direction, as is usual for any symmetry breaking mechani
However, at variance with the usual models, in the orde
phase the correlation length cannot be isotropic: order oc
inside all layers that are orthogonal to the chosen direct
while there is a negligible correlation along that direction
would be more sensible to describe the ordering that ta
place inside a single layer, thus neglecting any correla
among different layers. Inside each layer the correlat
length is isotropic, and thed52 variational Migdal-
Kadanoff method should give a better description of the tr
sition. The same argument should hold for the gene
d-dimensional molecular model. Moreover, despite the c
of this further approximation, the Migdal-Kadanoff metho
is known to work better for lower dimensions, and ad52
variational method could provide a tool for describing t
genericd-dimensional molecular model even ford.3.

A d52 version of the variational method requires a d
ferent choice for the fieldsh(a) which do not need to be
isotropic any more. Let us take the same field we used
Sec. II, namely,h(1)5h( x̂12 x̂2), h(2)52h(1), andh(3)
50. The matrixt1 is

t15S e4b18bh 1 e4bh

1 e28bh e24bh

e4bh e24bh 1
D . ~38!
g

are

a
.

d
rs
n,
t
es
n
n

-
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st

in

Notice that this is a 333 matrix since we are using thed
52 method but we are still dealing with ad53 molecular
model. The two matricest1 and t2 share the same eigenva
ues. Their ratio is

f ~b,h!5
~bx21111/x2!2A~bx22121/x2!214~11x2!

~bx21111/x2!1A~bx22121/x2!214~11x2!
~39!

Inserting this result in the scaling equation~33! evaluated at
d52 yields an implicit equation forbc versush. The nu-
merical solutions are reported in Fig. 3. They share mos
the features of thed52 molecular model:~i! There are sev-
eral solutions but there is no repulsive fixed point forh50;
~ii ! the physical solution starts at a negativeh which in this
case ish'20.226; ~iii ! the physical solution has just on
stationary pointh0 where bc reaches its minimum value
However, in this case the stationary point is ath05
20.2349 wherebc50.6122. This best estimate of the crit
cal point is not too far from the finite size scaling predictio
of the next section,bc50.53. The result is encouraging, an
gives us more confidence in our understanding of the phy
described by the molecular model. Strictly speaking, thisd
52 variational method describes the transition occurring i
single layer of molecules. However, at variance with thed
52 molecular model, each molecule is now allowed to
oriented along three different axes~two in-plane and one
out-of-plane orientations!. Thus this reasonable predictio
for bc could be regarded as an indirect proof that the cor
lation between two different layers is negligible, and that
the ordered phase the system behaves as a truly
dimensional one.

V. MONTE CARLO SAMPLING

In order to check the prediction achieved by different a
proximate methods it would be desirable to have an accu
numerical estimate of the critical temperature. That can e
ily be obtained by finite size scaling. Moreover, according
the scaling hypothesis, the critical exponentn can be ex-
tracted from the numerical data with good accuracy.

Cubic samplesN3N3N with N510,15,20,25,30 have
been considered. All the averages have been evaluate
Monte Carlo sampling with no special boundary condition

FIG. 3. Numerical solutions of the two-dimensional Migda
Kadanoff equations for a single layer of the three-dimensional m
lecular model. The critical temperatureb is reported as a function
of the field strengthh. The stationary point is ath5h0520.2349
whereb5bc50.6122. Forh.20.226 there is no physical solu
tion.
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In this model any ordering is characterized by the pr
ence of some degree of correlation along one-dimensio
chains of molecules. Ford53 there are 33N3N different
chains in each sample. Each chain may be labeled by
directiona51,2,3 and by two integer coordinatesI 1 ,I 2 run-
ning over a lattice layer orthogonal to the axisx̂a . For any
chain we define an order parameter

m~a,I 1 ,I 2!5
1

N (
Ja51

N

@ŵ~Ja ,I 1 ,I 2!• x̂a#, ~40!

whereŵ(Ja ,I 1 ,I 2) is the versorŵr at the chain siter whose
integer coordinates are determined byJa along the chain and
by the coupleI 1 ,I 2 in the orthogonal directions. If there is n
correlation at all (b→0) then m(a,I 1 ,I 2)'1/3 for any
chain in the sample. By averaging over all the chains of e
sample and over all the configurations, we obtain^m&51/3.
For largeN, according to the central limit theorem, in th
statistical ensemble the variablem follows a Gaussian distri-
bution centered at its average value. In the opposite li
(b→`) one-third of the chains in each sample have a la
m'1, while m'0 for two-thirds of them. Since any inter
mediate value ofm is unlikely, the statistical distribution o
m can be regarded as the superposition of two differ
peaked distributions centered atm50 and m51. If N is
large enough, and for a large number of configurations, s
distributions are very peaked and their width is very sm
Actually, just below the critical point the Gaussian distrib
tion already splits into a double-peak distribution. We c
monitor the transition by use of the new variableg,

g5
m2^m&

A^m2&2^m&2
. ~41!

By its definition the configurational average ofg is vanish-
ing ^g&50 and the second moment^g2&51. The variableg
differs from m only by a shift and a rescaling; thus the st
tistical distribution forg follows the same trend already dis
cussed form. However, the fourth moments5^g4& is now
strongly dependent on the number of peaks characteri
the statistical distribution. For a single Gaussians53 ex-
actly. Below the critical temperature the distribution spli
In the thermodynamic limitN→` the width of each peak
vanishes, while the two peaks separate by a finite quan
For instance, assume that just below the critical point o
third of the chains yieldm'1/31e wheree is a very small
increase in the chain correlation that breaks the symmetr
the sample. The other two-thirds of the chains must yi
m'1/32e/2 since by its definition̂ m&51/3 exactly. Ne-
glecting the width of the peaks we may approximate
statistical distribution form as the superposition of twod
functions with weight factors

P~m!5
2

3
dS m2

1

3
1

e

2D1
1

3
dS m2

1

3
2e D . ~42!

By use of such an approximate statistical distribution
calculation of the fourth moments5^g4& is straightforward
and givess51.5 for any e, no matter how small. This is
one-half of the single Gaussian value. Thus in the thermo
-
al

its

h

it
e

t

h
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d

e

e
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namic limit we expect that the fourth moments should be-
have like a step function with constant valuess53 and s
51.5, respectively, above and below the critical temperatu
and a sharp jump at the critical point. For finite size samp
the fourth moment is expected to be continuous across
transition, but according to the scaling hypothesis the criti
value should not depend on the sample size if we assum
one-parameter scaling law across the critical point:

s5s„L/j~b!…, ~43!

whereL is here the sample length, andj is the correlation
length, which is a function of temperature. According to su
a scaling laws5s(0) at the critical point for anyL.

We have checked this prediction by standard Monte Ca
sampling. For any fixed sample size, we have taken a c
pletely random initial configuration, and thermalized it at
very high temperature (b'0.02) by 53104 complete
sweeps. The temperature is then decreased by steps oDb
50.02. At each step a good thermalization is achieved
83103 complete sweeps, and then the averages are ev
ated over the successive 23103 sweeps. Once a sufficientl
low temperature is reached (b'1), the process is reverse
and the temperature increased up to the initial value.
have checked that the hysteresis is small in the whole ra
of temperature considered. Moreover, the small differen
observed in going up and down give a measure of the er
on the configurational averages that have been approxim
by the mean values. The fourth moments is reported in Fig.
4 for N515,20,25,30. All the curves cross at the same po
bc50.5360.01 as predicted by the one-parameter scal
hypothesis. Moreover, for very large or very small tempe
tures the correlation length becomes very small and
fourth moments should approach its thermodynamic-lim
value s→s(`), which is expected to bes(`)53 at high
temperature ands(`)51.5 at low temperature. As shown i
Fig. 4 the measureds approaches such limits far away from
the critical point.

According to the usual definition of the critical exponen

j;
1

~b2bc!
n , ~44!

the scaling equation~43! allows for an accurate estimate o
its value: linearizings around the critical point yields

FIG. 4. The fourth moments5^g4& versus the inverse tempera
tureb for N515,20,25,30. ForN530 only a few points around the
critical point have been evaluated. The curves are a linear inte
lation between points and are reported as a guide for the eye.
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ln L5n lnus8~bc!u1const, ~45!

wheres8(bc) is the derivative ofs as a function ofb. In Fig.
5 a best fit by the least squares method is reported yield
n50.4460.02. Here the error is the statistical one comi
from the linear fit.

Of course this Monte Carlo calculation is far from bein
the best numerical simulation that can be achieved by m
ern computing machines. Our sample sizes are relativ
small and a slight shift of the critical point cannot be rul
out. However, the estimates for the critical temperature
exponent are accurate enough for a comparison with exp
mental findings and for a check of the analytical results
the previous sections, and that is just what we needed a
moment. More refined calculations are called for in order
establish more accurate predictions.

VI. DISCUSSION

Here we summarize and discuss the main findings of
previous sections. According to mean-field calculations a
finite size scaling the three-dimensional molecular model
a second order continuous transition from an isotropic dis
dered high-temperature phase to an anisotropic t
dimensional ordered low-temperature phase. Thed53 real-
ization of the model is the one that more closely descri
real molecular systems. For this reason thed53 model has
been studied by the variational Migdal-Kadanoff method a
by numerical Monte Carlo simulation. The transition point
characterized by a diverging correlation length according
the one-parameter scaling hypothesis, which seems to be
filled as shown by the data of the previous section. On
other hand, thed52 model is special in itself for its equiva
lence to the two-dimensional Ising model, and for the ex
tence of exact analytical results. Thus thed53 model can be
seen as a nontrivial extension to higher dimension of
two-dimensional Ising model. Here ‘‘nontrivial’’ means th
thed53 molecular model does not belong to the universa
classes of the standardd53 extensions of the Ising mode
~three-dimensional Ising and Potts models!. The difference is
evident from a comparison of the ground stateT50 configu-

FIG. 5. Linear fit for the critical exponent according to Eq.~45!.
The points have been evaluated forN515,20,25,30.
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rations: highly degenerate and anisotropic in the molecu
model~with a two-dimensional character even for higher d
mensions!; with a small degeneration and fully isotropic i
the Potts models~including the Ising one as a special cas!.
By considering the two-dimensional character of the lo
temperature phase, the molecular model could be though
belong to the universality class of the simple tw
dimensional Ising or three-state Potts models. However
the high-temperature unbroken-symmetry phase the mol
lar model is fully isotropic and has a three-dimensional ch
acter.

A formal proof of such statements comes from a compa
son of the critical exponents. For the three-dimensional m
lecular model the finite size scaling calculation of the pre
ous section yieldsn50.44 to be compared to the two
dimensional two-state~Ising! and three-state Potts model
whose exponents aren51 andn50.83, respectively@15#, to
the three-dimensional Ising model whose exponent isn
50.64 @15#, and to the three-state three-dimensional Po
model which is known to undergo a first-order transiti
@20,21#.

The molecular model belongs to a universality class ch
acterized by a sort of dimensional transmutation. In fact,
der occurs in chains that are arranged in layers, and
disorder-order transition requires a decrease of the effec
dimensionality of the system. In the ordered phase the m
ecules are correlated inside layers, but there is no correla
between molecules that belong to different layers. This
derstanding of the ordered phase is in agreement with
finding that the two-dimensional Migdal-Kadanoff varia
tional method for a single layer yields a better prediction
the critical point than the three-dimensional method appl
to the whole lattice. On the other hand, the very same tw
dimensional variational method provides a convenient a
lytical tool for describing the genericd-dimensional molecu-
lar model by a straightforward generalization.

From such arguments the critical point has been given
upper bound by the variational method, which yieldsbc
50.61, while a lower bound is usually provided by mea
field analysis, which in thisd53 case givesbc50.375. The
numerical estimate of the previous sectionbc50.53 fits
nicely inside such bounds.

Having discussed some formal aspects of the molec
model and a few approximate methods that throw some l
on its phase transition, we would like to make contact w
the phenomenology. Our main finding—that the ord
disorder transition described by the model belongs to a
ferent universality class—deserves some experimental
Transitions of this kind have been observed in several s
tems, as discussed in the Introduction. Since the crit
properties should not depend on the microscopic details
the system we expect that the simple molecular model co
predict the correct critical exponent of real orientational tra
sitions occurring in complex real molecular systems es
cially under pressure. New experiments are called for in
der to test such ideas and explore this broad universa
class.
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